A Novel Cross-reaction Relation for Redox Series

By D. R. Rosseinsky

(Department of Chemistry, The University, Exeter EX4 4QD)

Summary A modification of the simple Marcus crossreaction relation, explicitly including fractions α of transition-state electron transfer different from one half, is shown to agree with observation for two redox series.

THE observation¹ that rates for oxidations by eleven complexes $Co^{III}(am)_4LCl^{s+}$ of Fe²⁺, V²⁺ and Ru(NH₃)₆²⁺ yield the following correlations with non-unit slope, is in

 $\log k(V^{II}) = 0.49 \log k(Fe^{II}) + 2.68;$ (1)

 $\log k(\text{Ru}^{II}) = 0.83 \log k(\text{Fe}^{II}) + 5.09$ (2)

contradiction of the simplest cross relation² for redox reactions in terms of self-exchange rates and equilibrium constants K. The rationalisation,¹ that the large K for Ru^{II}

and even larger K for V^{II} reactions results in successive decreases in sensitivity of redox rate to effect of K is here made quantitative by identifying sensitivity with α the transition-state fraction of electron transfer. Thus $\alpha = 0.5$ the usual value holds for K ca. unity and decreases for large K. We will infer α values (otherwise accessible only from putative wave mechanical calculation) from the observed slopes, and attempt calculation of the constant terms from them. The form resulting is $k_{12} = k_{11}^{1-\alpha} k_2^{\alpha} K_{12}^{\alpha}$, for reaction of species 1 with 2, which accords with the premise in regard to k_2 and K_{12} . For k_1 the exponent is chosen for dimensional consistency, and will introduce error which however can be minimised by choosing "1" as the species with the least self-exchange barrier, so invoking an erroneous fraction for only the lesser contribution to the total "12" activation barrier. (A comparable error is introduced in the usual cross-reaction relation by taking means of self-exchange energies.)

We apply this relation to the series noted: for reductants 1 and 2 (e.g. Fe^{II} and V^{II}) in reaction with a series of oxidants i,

$$k_{1i} = k_{11}^{1-\alpha_1}, k_{11}^{\alpha}, K_{1i}^{\alpha_1} \text{ and } k_{2i} = k_{21}^{1-\alpha_2} k_{12}^{\alpha_2} K_{2i}^{\alpha_2}$$

 K_{Fel} being least, we set $\alpha_1 = \frac{1}{2}$ and eliminating the k_i , obtain equation (3). Comparison with (1) gives $\alpha_2 = 0.245$,

$$\log k_{21} = 2\alpha_2 \log k_{11} + (1 - \alpha_2) \log k_2 - \alpha_2 \log k_1 + \alpha_2 \log (K_{21}/K_{11})$$
(3)

- ¹ P. R. Guenther and R. G. Linck, J. Amer. Chem. Soc., 1969, 3769.
 ² R. A. Marcus, Ann. Rev. Phys. Chem., 1964, 15, 155.
 ³ J. Silverman and R. W. Dodson, J. Amer. Chem. Soc., 1952, 56, 846.
 ⁴ K. V. Krishnamurty and A. C. Wahl, J. Amer. Chem. Soc., 1958, 80, 5921.
 ⁵ "Stability Constants", Chem. Soc. Special Publ., 1964.
 ⁶ T. J. Meyer and H. Taube, Inorg. Chem., 1968, 7, 2377.

and use of the self-exchange³ k for Fe^{II,III} and for⁴ V^{II,III}, with $K_{2i}/K_{1i} = K_{21}$ from electrode potentials,⁵ leads directly to the value for the constant of 2.42, in excellent agreement with the observed 2.68. Use of the RuII,III quantities and the $\alpha_3=0{\cdot}415$ from comparison of (2) with (3) gives a calculated 5.84 to compare with 5.09.

The modified equation should have wide applicability, and its simplicity suggests that the systems tested follow the simplest of mechanisms, that is, outer-sphere.

(Received, November 19th, 1971; Com. 1989.)

226